

MODULE TITLE	Energy Storage Technology	CREDIT VALUE	15
MODULE CODE	ENE3007	MODULE CONVENER	Prof Xiaohong Li (Coordinator)
DURATION: TERM	1	2	3
DURATION: WEEKS		12	
Number of Students Taking	Module (anticipated)	30	

DESCRIPTION - summary of the module content

Renewable energy is expected to provide a central solution to our need for a sustainable fuel. However, major challenges presented by renewable energies, such as fluctuations in output, unavailability, and unpredictability, limit their popularity. As a solution to these problems, energy storage technology (EST) is growing in significance. EST is to convert/store energy and to release energy in a controlled fashion when required, which improves energy efficiency and stabilizes operation of electricity grid.

In this module students will obtain general understanding of a number of energy storage systems. Technologies such as mechanical energy storage system (e.g. pumped hydro, compressed air), hydrocarbon storage, lithium ion battery, redox flow battery, lead acid battery, hydrogen and fuel cells, and thermal energy storage will be studied in terms of principles of operation, characteristics, development progress and challenges.

AIMS - intentions of the module

The aim of this module is to introduce and evaluate major energy storage systems. Some key concepts, techniques and strategic choices will be explored including principles and fundamentals of EST, operation parameters, design consideration and system optimisation. In addition, cost effectiveness, environmental compatibility and energy/materials sustainability will be taken into consideration.

INTENDED LEARNING OUTCOMES (ILOs) (see assessment section below for how ILOs will be assessed)

On successful completion of this module. **vou should be able to:**

Module Specific Skills and Knowledge:

Show knowledge, understanding, and ability to quantify the relative capacities and efficiencies of various types of energy storage technologies.

Apply the knowledge and understanding of energy storage systems to identify optimal energy storage solutions in varying application areas.

Understand key concept of battery design, e.g. redox couples, electrode materials, electrolyte, etc.

Compare various batteries in the light of characteristics such as open circuit potential, power density, energy efficiency and charge-discharge behaviour. Understand redox flow battery (RFB): RFB concepts and principles, classification, timeline of its development, progress and remaining challenges.

Discipline Specific Skills and Knowledge:

Recognise existing and developing technologies for energy storage.

Describe the fundamentals of energy storage system.

Suggest an appropriate battery technology for a particular application

Identify and size an energy storage system for a given application.

Personal and Key Transferable/ Employment Skills and Knowledge: Demonstrate appropriate mathematical skills - taught in lectures, practiced through worksheets, assessed in assignment and in-class test.

Access the literature on energy storage technology and write reports on their development.

Appreciate an industrial perspective of technology development.

Plan and execute practical tests of energy storage equipment and critically analyse the results of tests.

SYLLABUS PLAN - summary of the structure and academic content of the module

Overview of energy storage technologies.

Hydrocarbon storage - storage of LPG, LNG and liquid fuels for strategic / security needs; design details for solution mined and excavated caverns; volume and pressure calculations for required energy storage capacity.

Hydrogen economy - hydrogen production, storage, infrastructure, safety, cost, environmental concerns. Carbon capture and storage - locations and types of suitable CCS reservoirs (notably North Sea); calculations for CCS capacity based on reservoir porosity, thickness, area and pressure.

Fundamentals of electrochemistry - electrochemical principles and reactions, electroanalytical techniques, factors affecting battery performance. Conventional batteries lead acid, nickel-cadmium batteries, etc.

Advanced batteries - redox flow battery, lithium ion battery, sodium-sulphur battery. Fuel cells - hydrogen fuel cell, direct-methanol fuel cell, molten carbonate fuel cell, solid oxide fuel cells, etc.

	LEA	RNING AND TEACHING					
LEARNING ACTIVITIES AND TEACHING METHODS (given in hours of study time)							
Scheduled Learning & Teaching Activities	40.00	Guided Independent Study	110.00	Placement / Study Abroad	0.00		
DETAILS OF LEARNING ACTIVITIES AND TEACHING METHODS							
Category Scheduled learning and teaching activities Guided independent study		Hours of study time 40 110	Description Lectures with integrated tutorials Private study				

ASSESSMENT

FORMATIVE ASSESSMENT - for feedback and development purposes; does not count towards module grade

Size of Assessment (e.g. duration/length) ILOs Assessed Feedback Method Form of Assessment

Coursework	50	Written Exam	S	50	Practical	Exams	0		
DETAILS OF SUMMATIVE ASSESSMENT									
Form of Assessment	% of Credit	Size of Assessment (e.g. duration/length)			ILOs Assessed Feedback Metho				
Coursework: Energy storage design report In class Test: Electrochemical energy stora		50 50	3000-word report including figure 1.5 hours	es and ta	bles	1,2,6,7,9,10,11,12 1,3,4,5,7,8,10,11,13	Written feedback Written feedback		

DETAILS OF RE-ASSESSMENT (where required by referral or deferral)							
Original Form of Assessment	Form of Re-assessment	ILOs Re-assessed	Time Scale for Re-reassessment				
Summative assessment	Additional assessment	As above	August Ref/Def period				

RE-ASSESSMENT NOTES

As above 1 piece of coursework 50% and 1 in class test 50%.

RESOURCES

INDICATIVE LEARNING RESOURCES - The following list is offered as an indication of the type & level of information that you are expected to consult. Further guidance will be provided by the Module Convener

Basic reading: DOE/EPRI Electricity Storage Handbook, US Department of Energy

https://www.energy.gov/oe/activities/technology-development/energy-storage European Energy Storage Technology Development Roadmap towards 2030

https://ease-storage.eu/wp-content/uploads/2015/10/EASE-EERA-recommendations-Roadmap-LR.pdf

International Energy Outlook 2019 with Projections to 2050 https://www.eia.gov/outlooks/ieo/pdf/ieo2019.pdf from US Department of Energy (published in September 2019) Energy Flow Chart 2018 https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/818151/Energy_Flow_Chart_2018.pdf from Department for Business, Energy & Industrial Strategy (published 25 July 2019)

Digest of UK Energy Statistics (DUKES): Energy 2019

https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/820637/Chapter_1.pdf from Department for Business, Energy & Industrial Strategy (last updated 25 July 2019)

Digest of UK Energy Statistics (DUKES): Renewable sources of energy 2019

https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/840014/Chapter_6.pdf from Department for Business, Energy & Industrial Strategy (last updated 25 July 2019)

Barra all'anno	12.44	e	44.2.4	and a short set
Keadind	IIST	TOR	this	module:

Туре	Author	Title			Edition	Publisher	Year	ISBN	Search	
Set	Linden, D. & Reddy, T.B.	Handbo	ook of Batteries			McGraw Hill	2003	0-07-135978-8	[Library]	
Set	Sorensen, B.		able energy conversion, transmission, and storage Part IX: High- energy storage			Academic Press	2007	9780123742629	[Library]	
Set	Pletcher, D.	A First	Course in Electrode Processes		2nd	Cambridge:RSC	2009	9781847558930	[Library]	
Set	Barnes, F.S. & Levine, J. G.	Large E	Energy Storage Systems Handbook		1st	CRC Press	2011	9781420086003	[Library]	
Set	Sioshansi, F.P.	Smart	Grid: Integrating Renewable, Distribute	ed & Efficient Energy	1st	Oxford: Academic	2011	9780123864529	[Library]	
Set	Ford, R.M. & Burns, R.M	Energy	Storage Technologies for Power Grids	and Electric Transportation	n1st	Nova Science Publishers	2012	9781622573516	[Library]	
Set	Demirel, Y.	Energy	: Production, Conversion, Storage, Con	servation, and Coupling	1st	London: Springer	2012	9781447123729	[Library]	
Set	Zhang, J., Zhang, L., Liu, H. Sun, A. & Liu, R.	'Electro	chemical Technologies for Energy Stor	1st	Weinheim: Wiley-VCH	2012	9783527328697	[Library]		
Set	Sorenson, B.	Hydrog	Hydrogen and Fuel Cells: Emerging Technologies and Application			Academic Press	2012	9780123877093	[Library]	
Set	Grasman, S.E.	Hydrog	/drogen energy and vehicle systems			CRC Press	2013	9781439826812	[Library]	
Set	Menictas, C., Skyllas- Kazacos, M. & Lim, T.M.		es in batteries for large- and medium- tions in power systems and electric ve		1st	Woodhead Publishing	2014	9781782420132/132	[Library]	
Set	Du, P. & Lu, L.		Storage to Smart Grids: Planning and riable Energy Sources	Operation for Renewable	1st	Academic Press	2015	9780124104914	[Library]	
CRED	DIT VALUE		15	ECTS VALUE		7.5				
PRE-	PRE-REOUISITE MODULES		CSM2318, CSM2188, CSM1037							
CO-R	EQUISITE MODULES									
NQF LEVEL (FHEQ)			6	AVAILABLE AS DISTAN	CE LEAR	NING No				
ORIGIN DATE			Thursday 06 July 2017	LAST REVISION DATE		Tuesday	02 Feb	oruary 2021		
			Energy storage, mechanical energy storage, budges then storage, carbon conture and storage, electrochemical energy							

KEY WORDS SEARCH

Energy storage; mechanical energy storage, hydrocarbon storage; carbon capture and storage; electrochemical energy storage, batteries; hydrogen & fuel cells; thermal storage; hydrogen economy.